Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0058224, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651867

RESUMO

The impacts of microsporidia on host individuals are frequently subtle and can be context dependent. A key example of the latter comes from a recently discovered microsporidian symbiont of Daphnia, the net impact of which was found to shift from negative to positive based on environmental context. Given this, we hypothesized low baseline virulence of the microsporidian; here, we investigated the impact of infection on hosts in controlled conditions and the absence of other stressors. We also investigated its phylogenetic position, ecology, and host range. The genetic data indicate that the symbiont is Ordospora pajunii, a newly described microsporidian parasite of Daphnia. We show that O. pajunii infection damages the gut, causing infected epithelial cells to lose microvilli and then rupture. The prevalence of this microsporidian could be high (up to 100% in the lab and 77% of adults in the field). Its overall virulence was low in most cases, but some genotypes suffered reduced survival and/or reproduction. Susceptibility and virulence were strongly host-genotype dependent. We found that North American O. pajunii were able to infect multiple Daphnia species, including the European species Daphnia longispina, as well as Ceriodaphnia spp. Given the low, often undetectable virulence of this microsporidian and potentially far-reaching consequences of infections for the host when interacting with other pathogens or food, this Daphnia-O. pajunii symbiosis emerges as a valuable system for studying the mechanisms of context-dependent shifts between mutualism and parasitism, as well as for understanding how symbionts might alter host interactions with resources. IMPORTANCE: The net outcome of symbiosis depends on the costs and benefits to each partner. Those can be context dependent, driving the potential for an interaction to change between parasitism and mutualism. Understanding the baseline fitness impact in an interaction can help us understand those shifts; for an organism that is generally parasitic, it should be easier for it to become a mutualist if its baseline virulence is relatively low. Recently, a microsporidian was found to become beneficial to its Daphnia hosts in certain ecological contexts, but little was known about the symbiont (including its species identity). Here, we identify it as the microsporidium Ordospora pajunii. Despite the parasitic nature of microsporidia, we found O. pajunii to be, at most, mildly virulent; this helps explain why it can shift toward mutualism in certain ecological contexts and helps establish O. pajunii is a valuable model for investigating shifts along the mutualism-parasitism continuum.

2.
mBio ; 14(4): e0131323, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37486265

RESUMO

Environmental DNA analyses of fungal communities typically reveal a much larger diversity than can be ascribed to known species. Much of this hidden diversity lies within undescribed fungal lineages, especially the early diverging fungi (EDF). Although these EDF often represent new lineages even at the phylum level, they have never been cultured, making their morphology and ecology uncertain. One of the methods to characterize these uncultured fungi is a single-cell DNA sequencing approach. In this study, we established a large data set of single-cell sequences of EDF by manually isolating and photographing parasitic fungi on various hosts such as algae, protists, and micro-invertebrates, combined with subsequent long-read sequencing of the ribosomal DNA locus (rDNA). We successfully obtained rDNA sequences of 127 parasitic fungal cells, which clustered into 71 phylogenetic lineages belonging to seven phylum-level clades of EDF: Blastocladiomycota, Chytridiomycota, Aphelidiomycota, Rozellomycota, and three unknown phylum-level clades. Most of our single cells yielded novel sequences distinguished from both described taxa and existing metabarcoding data, indicating an expansive and hidden diversity of parasitic taxa of EDF. We also revealed an unexpected diversity of endobiotic Olpidium-like chytrids and hyper-parasitic lineages. Overall, by combining photographs of parasitic fungi with phylogenetic analyses, we were able to better understand the ecological function and morphology of many of the branches on the fungal tree of life known only from DNA sequences. IMPORTANCE Much of the diversity of microbes from natural habitats, such as soil and freshwater, comprise species and lineages that have never been isolated into pure culture. In part, this stems from a bias of culturing in favor of saprotrophic microbes over the myriad symbiotic ones that include parasitic and mutualistic relationships with other taxa. In the present study, we aimed to shed light on the ecological function and morphology of the many undescribed lineages of aquatic fungi by individually isolating and sequencing molecular barcodes from 127 cells of host-associated fungi using single-cell sequencing. By adding these sequences and their photographs into the fungal tree, we were able to understand the morphology of reproductive and vegetative structures of these novel fungi and to provide a hypothesized ecological function for them. These individual host-fungal cells revealed themselves to be complex environments despite their small size; numerous samples were hyper-parasitized with other zoosporic fungal lineages such as Rozellomycota.


Assuntos
Quitridiomicetos , Microscopia , Filogenia , Fungos , Quitridiomicetos/genética , DNA Ribossômico/genética , Água Doce/microbiologia , DNA Fúngico/genética , DNA Fúngico/química
3.
Front Microbiol ; 14: 1201230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408638

RESUMO

Introduction: Microbial communities are important components of glacier and snowpack ecosystems that influence biogeochemical cycles and snow/ice melt. Recent environmental DNA surveys have revealed that chytrids dominate the fungal communities in polar and alpine snowpacks. These could be parasitic chytrids that infect snow algae as observed microscopically. However, the diversity and phylogenetic position of parasitic chytrids has not been identified due to difficulties in establishing their culture and subsequent DNA sequencing. In this study, we aimed to identify the phylogenetic positions of chytrids infecting the snow algae, Chloromonas spp., bloomed on snowpacks in Japan. Methods: By linking a microscopically picked single fungal sporangium on a snow algal cell to a subsequent sequence of ribosomal marker genes, we identified three novel lineages with distinct morphologies. Results: All the three lineages belonged to Mesochytriales, located within "Snow Clade 1", a novel clade consisting of uncultured chytrids from snow-covered environments worldwide. Additionally, putative resting spores of chytrids attached to snow algal cells were observed. Discussion: This suggests that chytrids may survive as resting stage in soil after snowmelt. Our study highlights the potential importance of parasitic chytrids that infect snow algal communities.

4.
Harmful Algae ; 120: 102352, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36470607

RESUMO

A new chytrid genus and species was isolated and cultured from samples obtained in the Baltic Sea during a dinoflagellate bloom event. This species is characterized by having a spherical sporangium without papillae and zoospores of 2-3 µm in diameter that are released through 3 discharge pores. Molecular phylogeny based on ribosomal operon showed its sister position to the Dinomyces cluster in Rhizophydiales. Zoospores lack fenestrated cisternae but contain a paracrystalline inclusion, found in a Rhizophydiales representative for the first time. Additionally, the kinetid features are uncommon for Rhizophydiales and only observed in Dinomyces representatives so far. These morphological features and its phylogenetic relationships justify the description of the new genus and speciesParadinomyces triforaminorum gen. nov. sp. nov. belonging to the family Dinomycetaceae. The chytrid was detected during a high-biomass bloom of the dinoflagellate Kryptoperidinium foliaceum. Laboratory experiments suggest this species is highly specific and demonstrate the impact it can have on HAB development. The chytrid co-occurred with three other parasites belonging to Chytridiomycota (Fungi) and Perkinsea (Alveolata), highlighting that parasitic interactions are common during HABs in brackish and marine systems, and these multiple parasites compete for similar hosts.


Assuntos
Alveolados , Quitridiomicetos , Dinoflagelados , Filogenia , Dinoflagelados/microbiologia
5.
Mycologia ; 114(6): 934-946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36166197

RESUMO

Kickxellomycotina encompasses two fungal groups: a saprobic group in excrement and soil and an arthropod gut-inhabiting group. The evolutionary transition between these two lifestyles is unclear due to the lack of knowledge on intermediate forms and lifestyles. Here, we describe a new species, Unguispora rhaphidophoridarum, that was isolated from the excrement of cave crickets (Rhaphidophoridae) in Japan. This species has a novel lifestyle that is intermediate between the saprobic and gut-inhabiting groups. The new genus Unguispora is a member of the Kickxellales and characterized by the sterile appendages born on the sporocladium and by the claw-like ornamentation of the sporangiole. Phylogenetic analysis based on 18S and 28S nuclear ribosomal DNA showed that this fungus is distinct from all known kickxellalean genera and is sister to Linderina. The sporangiospore of the new species germinated only in anaerobiosis and grew in a yeast-like form. The yeast-like cells, defined as "secondary spores," germinated into hyphae in aerobiosis. In the alimentary tract of cave crickets, the sporangiola are attached to the proventriculus (foregut) by the claw-like ornamentation and multiplicate in the same yeast-like form as under culture. We introduce a new term, "amphibious fungi," to describe fungi that have two life stages, one outside and the other inside the host gut, like U. rhaphidophoridarum. The discovery of an amphibious fungus in Kickxellales, which was formerly considered to be only saprobic, suggests that Kickxellomycotina has evolved in association with the animal gut.


Assuntos
Fungos , Saccharomyces cerevisiae , Animais , Filogenia , Saccharomyces cerevisiae/genética , DNA Ribossômico/genética , Esporos Fúngicos , DNA Fúngico/genética , Análise de Sequência de DNA
6.
Proc Natl Acad Sci U S A ; 119(36): e2116841119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037379

RESUMO

Most of the described species in kingdom Fungi are contained in two phyla, the Ascomycota and the Basidiomycota (subkingdom Dikarya). As a result, our understanding of the biology of the kingdom is heavily influenced by traits observed in Dikarya, such as aerial spore dispersal and life cycles dominated by mitosis of haploid nuclei. We now appreciate that Fungi comprises numerous phylum-level lineages in addition to those of Dikarya, but the phylogeny and genetic characteristics of most of these lineages are poorly understood due to limited genome sampling. Here, we addressed major evolutionary trends in the non-Dikarya fungi by phylogenomic analysis of 69 newly generated draft genome sequences of the zoosporic (flagellated) lineages of true fungi. Our phylogeny indicated five lineages of zoosporic fungi and placed Blastocladiomycota, which has an alternation of haploid and diploid generations, as branching closer to the Dikarya than to the Chytridiomyceta. Our estimates of heterozygosity based on genome sequence data indicate that the zoosporic lineages plus the Zoopagomycota are frequently characterized by diploid-dominant life cycles. We mapped additional traits, such as ancestral cell-cycle regulators, cell-membrane- and cell-wall-associated genes, and the use of the amino acid selenocysteine on the phylogeny and found that these ancestral traits that are shared with Metazoa have been subject to extensive parallel loss across zoosporic lineages. Together, our results indicate a gradual transition in the genetics and cell biology of fungi from their ancestor and caution against assuming that traits measured in Dikarya are typical of other fungal lineages.


Assuntos
Fungos , Estágios do Ciclo de Vida , Filogenia , Diploide , Fungos/classificação , Fungos/genética , Genoma Fúngico/genética
7.
ISME J ; 16(9): 2242-2254, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35764676

RESUMO

Zoosporic fungi of the phylum Chytridiomycota (chytrids) regularly dominate pelagic fungal communities in freshwater and marine environments. Their lifestyles range from obligate parasites to saprophytes. Yet, linking the scarce available sequence data to specific ecological traits or their host ranges constitutes currently a major challenge. We combined 28 S rRNA gene amplicon sequencing with targeted isolation and sequencing approaches, along with cross-infection assays and analysis of chytrid infection prevalence to obtain new insights into chytrid diversity, ecology, and seasonal dynamics in a temperate lake. Parasitic phytoplankton-chytrid and saprotrophic pollen-chytrid interactions made up the majority of zoosporic fungal reads. We explicitly demonstrate the recurrent dominance of parasitic chytrids during frequent diatom blooms and saprotrophic chytrids during pollen rains. Distinct temporal dynamics of diatom-specific parasitic clades suggest mechanisms of coexistence based on niche differentiation and competitive strategies. The molecular and ecological information on chytrids generated in this study will aid further exploration of their spatial and temporal distribution patterns worldwide. To fully exploit the power of environmental sequencing for studies on chytrid ecology and evolution, we emphasize the need to intensify current isolation efforts of chytrids and integrate taxonomic and autecological data into long-term studies and experiments.


Assuntos
Quitridiomicetos , Diatomáceas , Parasitos , Animais , Quitridiomicetos/genética , Diatomáceas/genética , Diatomáceas/microbiologia , Fungos/genética , Lagos/microbiologia , Fitoplâncton/microbiologia
8.
Mycologia ; 114(3): 544-555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35605094

RESUMO

Aphelids (phylum Aphelida = Aphelidiomycota) are intracellular parasitoids of algae and represent one of the early-diverging or sister lineages of the kingdom Fungi. Although aphelids are a small group comprising four genera and 17 species, molecular phylogenetic analyses revealed that numerous environmental DNA sequences represent undescribed lineages, indicating their hidden diversity. Here, we investigated a novel aphelid strain, KS114, that parasitizes selenastracean green algae. KS114 exhibited a life cycle typical of aphelids and produced posteriorly uniflagellate zoospores that resembled those of Aphelidium chlorococcorum f. majus in possessing a single apical filopodium but could be distinguished by ultrastructure features. In KS114, the kinetosome and nonflagellated centriole were aligned in parallel, a unique characteristic among the known aphelids. Kinetid-associated structures, such as fibrillar root and microtubules, were not found in the zoospores of KS114. In the molecular phylogeny of nuc 18S rDNA sequences, KS114 clustered with two environmental sequences and was distinct from all other sequenced species. Based on these results, we describe this aphelid as a new species, Aphelidium parallelum.http://www.zoobank.org/urn:lsid:zoobank.org:act:3CB658DB-1F12-41EF-A57D-2CBFCDE6A49A.


Assuntos
Clorófitas , Eucariotos , Clorófitas/genética , DNA Ribossômico/genética , Eucariotos/genética , Eucariotos/ultraestrutura , Fungos , Filogenia
9.
Fungal Divers ; 109(1): 59-98, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34608378

RESUMO

The increasing number of new fungal species described from all over the world along with the use of genetics to define taxa, has dramatically changed the classification system of early-diverging fungi over the past several decades. The number of phyla established for non-Dikarya fungi has increased from 2 to 17. However, to date, both the classification and phylogeny of the basal fungi are still unresolved. In this article, we review the recent taxonomy of the basal fungi and re-evaluate the relationships among early-diverging lineages of fungal phyla. We also provide information on the ecology and distribution in Mucoromycota and highlight the impact of chytrids on amphibian populations. Species concepts in Chytridiomycota, Aphelidiomycota, Rozellomycota, Neocallimastigomycota are discussed in this paper. To preserve the current application of the genus Nephridiophaga (Chytridiomycota: Nephridiophagales), a new type species, Nephridiophaga blattellae, is proposed.

10.
Protist ; 171(3): 125728, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32544843

RESUMO

Aphelids (Aphelida) are intracellular parasitoids of algae and represent one of the early diverging or sister lineages of the kingdom Fungi. Although Aphelida is a small group, molecular phylogenetic analyses revealed that many environmental sequences belong to Aphelida, suggesting that aphelids are distributed worldwide; however, the extent of their diversity is unclear. Here, we investigated a novel aphelid culture APH2 that parasitizes the green alga Coccomyxa sp. APH2 produced posteriorly uniflagellate zoospores, a defining character of the genus Aphelidium. The residual body of APH2 was spherical in the mature plasmodium, but became amorphous during zoospore formation and collapsed after zoospore discharge, which has not been described for other Aphelidium species. Zoospores of APH2 possessed a striated rhizoplast that extended anteriorly from the kinetosome to the posterior end of the nucleus, and a microtubular root arising from the side of the kinetosome and lying almost parallel to the rhizoplast, both of which are unique among aphelid taxa. A molecular phylogenetic analysis based on the 18S rDNA sequences placed APH2 as sister lineage to all other known aphelid sequences. Based on these results, we describe this aphelid as a new species, Aphelidium collabens.


Assuntos
Clorófitas/microbiologia , Eucariotos/classificação , Filogenia , Evolução Biológica , Eucariotos/ultraestrutura , Fungos/classificação , Japão , Microscopia Eletrônica de Transmissão , RNA Ribossômico 18S/genética
11.
Angew Chem Int Ed Engl ; 59(34): 14399-14403, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32511879

RESUMO

Dodecavanadate, [V12 O32 ]4- (V12), possesses a 4.4 Šcavity entrance, and the cavity shows unique electrophilicity. Owing to the high polarizability, Br2 was inserted into V12, inducing the inversion of one of the VO5 square pyramids to form [V12 O32 (Br2 )]4- (V12(Br2)). The inserted Br2 molecule was polarized and showed a peak at 185 cm-1 in the IR spectrum. The reaction of V12(Br2) and toluene yielded bromination of toluene at the ring, showing the electrophilicity of the inserted Br2 molecule. Compound V12(Br2) also reacted with propane, n-butane, and n-pentane to give brominated alkanes. Bromination with V12(Br2) showed high selectivity for 3-bromopentane (64 %) among the monobromopentane products and preferred threo isomer among 2-,3-dibromobutane and 2,3-dibromopenane. The unique inorganic cavity traps Br2 leading the polarization of the diatomic molecule. Owing to its new reaction field, the trapped Br2 shows selective functionalization of alkanes.

12.
ISME J ; 13(8): 1899-1910, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30809012

RESUMO

Extant eukaryote ecology is primarily sustained by oxygenic photosynthesis, in which chlorophylls play essential roles. The exceptional photosensitivity of chlorophylls allows them to harvest solar energy for photosynthesis, but on the other hand, they also generate cytotoxic reactive oxygen species. A risk of such phototoxicity of the chlorophyll must become particularly prominent upon dynamic cellular interactions that potentially disrupt the mechanisms that are designed to quench photoexcited chlorophylls in the phototrophic cells. Extensive examination of a wide variety of phagotrophic, parasitic, and phototrophic microeukaryotes demonstrates that a catabolic process that converts chlorophylls into nonphotosensitive 132,173-cyclopheophorbide enols (CPEs) is phylogenetically ubiquitous among extant eukaryotes. The accumulation of CPEs is identified in phagotrophic algivores belonging to virtually all major eukaryotic assemblages with the exception of Archaeplastida, in which no algivorous species have been reported. In addition, accumulation of CPEs is revealed to be common among phototrophic microeukaryotes (i.e., microalgae) along with dismantling of their secondary chloroplasts. Thus, we infer that CPE-accumulating chlorophyll catabolism (CACC) primarily evolved among algivorous microeukaryotes to detoxify chlorophylls in an early stage of their evolution. Subsequently, it also underpinned photosynthetic endosymbiosis by securing close interactions with photosynthetic machinery containing abundant chlorophylls, which led to the acquisition of secondary chloroplasts. Our results strongly suggest that CACC, which allowed the consumption of oxygenic primary producers, ultimately permitted the successful radiation of the eukaryotes throughout and after the late Proterozoic global oxygenation.


Assuntos
Clorofila/metabolismo , Eucariotos/metabolismo , Oxigênio/metabolismo , Cloroplastos/metabolismo , Ecossistema , Eucariotos/classificação , Eucariotos/genética , Microalgas/classificação , Microalgas/genética , Microalgas/metabolismo , Fotossíntese , Filogenia , Simbiose
13.
Microbes Environ ; 33(4): 417-427, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30531154

RESUMO

Endofungal bacteria are widespread within the phylum Mucoromycota, and these include Burkholderiaceae-related endobacteria (BRE). However, the prevalence of BRE in Mortierellomycotinan fungi and their phylogenetic divergence remain unclear. Therefore, we examined the prevalence of BRE in diverse species of Mortierella. We surveyed 238 isolates of Mortierella spp. mainly obtained in Japan that were phylogenetically classified into 59 species. BRE were found in 53 isolates consisting of 22 species of Mortierella. Among them, 20 species of Mortierella were newly reported as the fungal hosts of BRE. BRE in a Glomeribacter-Mycoavidus clade in the family Burkholderiaceae were separated phylogenetically into three groups. These groups consisted of a group containing Mycoavidus cysteinexigens, which is known to be associated with M. elongata, and two other newly distinguishable groups. Our results demonstrated that BRE were harbored by many species of Mortierella and those that associated with isolates of Mortierella spp. were more phylogenetically divergent than previously reported.


Assuntos
Burkholderiaceae/classificação , Burkholderiaceae/isolamento & purificação , Mortierella/classificação , Mortierella/fisiologia , Filogenia , Simbiose , Burkholderiaceae/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Japão , Mortierella/genética , Mortierella/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Angew Chem Int Ed Engl ; 57(49): 16051-16055, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30318864

RESUMO

Design of cavities for a target molecule and the elucidation of the corresponding host-guest interactions are important for molecular manipulation. A discrete dodecavanadate bowl, [V12 O32 ]4- (V12), with an entrance diameter of 4.4 Šand an electron-rich guest at the center of the bowl, was stabilized by electrostatic interactions. A characteristic of V12 is a solid-state polytopal rearrangement during guest elimination and recapture. A guest-free dodecavanadate, [V12 O32 ]4- (V12-free), was prepared by removal of the guest from CH2 Cl2 -inserted V12 under vacuum at 50 °C. Single-crystal X-ray analysis revealed that one of the VO5 square pyramids at the bottom of V12-free was inverted to fill the void of the bowl cavity. The exposure of V12-free to the guest molecule vapors of CH2 Cl2 , 1,2-dichloroethane, MeNO2 , MeCN, and MeBr resulted in the selective insertion of the guest to reform the guest-inserted V12 structure. Whereas CO2 could be inserted in the V12 bowl, CH4 and CO could not.

15.
Protist ; 169(4): 507-520, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29935342

RESUMO

Chytrids are early diverging lineages of true fungi that reproduce with posteriorly uniflagellate zoospores. In aquatic ecosystems, parasitic chytrids of algae have important ecological roles by influencing the population dynamics of phytoplankton and transferring nutrients and energy from inedible algae to zooplankton via zoospores. Despite their ecological importance, information on parasitic chytrids is lacking in the current systematics of chytrids. Here, we investigated a novel chytrid culture KS100 that parasitizes the green alga, Microglena coccifera (Volvocales). A cross-inoculation experiment revealed that KS100 infection was specific to the genus Microglena. Thallus morphology of KS100 is characterized by spherical or subspherical zoosporangium, which becomes slightly angular during zoospore discharge, 2-3 small and inoperculate pores from where zoospores are discharged, and rhizoids branching at the base that extends in a fan-like shape. This combination of characteristics was distinct from any other known chytrids. In molecular phylogeny, KS100 was placed in the order Rhizophydiales and was distinguished from any known families in the order. Zoospores of KS100 possessed a kinetosome-associated structure whose morphology and positioning were unique among the Rhizophydiales. Based on these results, we describe this chytrid as Collimyces mutans gen. et sp. nov. in the new family Collimycetaceae.


Assuntos
Clorofíceas/parasitologia , Quitridiomicetos/classificação , Quitridiomicetos/fisiologia , Quitridiomicetos/ultraestrutura , Tipagem Molecular , Filogenia
16.
J Eukaryot Microbiol ; 65(6): 870-881, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29752884

RESUMO

Chytrids are zoosporic fungi that play an important, but yet understudied, ecological role in aquatic ecosystems. Many chytrid species have been morphologically described as parasites on phytoplankton. However, the majority of them have rarely been isolated and lack DNA sequence data. In this study we isolated and cultivated three parasitic chytrids, infecting a common volvocacean host species, Yamagishiella unicocca. To identify the chytrids, we characterized morphology and life cycle, and analyzed phylogenetic relationships based on 18S and 28S rDNA genes. Host range and specificity of the chytrids was determined by cross-infection assays with host strains, characterized by rbcL and ITS markers. We were able to confirm the identity of two chytrid strains as Endocoenobium eudorinae Ingold and Dangeardia mamillata Schröder and described the third chytrid strain as Algomyces stechlinensis gen. et sp. nov. The three chytrids were assigned to novel and phylogenetically distant clades within the phylum Chytridiomycota, each exhibiting different host specificities. By integrating morphological and molecular data of both the parasitic chytrids and their respective host species, we unveiled cryptic host-parasite associations. This study highlights that a high prevalence of (pseudo)cryptic diversity requires molecular characterization of both phytoplankton host and parasitic chytrid to accurately identify and compare host range and specificity, and to study phytoplankton-chytrid interactions in general.


Assuntos
Clorofíceas/microbiologia , Quitridiomicetos/classificação , Quitridiomicetos/isolamento & purificação , Quitridiomicetos/patogenicidade , Especificidade de Hospedeiro , Filogenia , Quitridiomicetos/genética , Infecção Hospitalar , DNA Fúngico/genética , DNA Ribossômico/genética , Alemanha , Interações Hospedeiro-Parasita , Lagos/microbiologia , Estágios do Ciclo de Vida , Fitoplâncton/microbiologia , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética
17.
Protist ; 168(4): 392-407, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28704705

RESUMO

Chytrids are a diverse group of ubiquitous true zoosporic fungi. The recent molecular discovery of a large diversity of undescribed chytrids has raised awareness on their important, but so far understudied ecological role in aquatic ecosystems. In the pelagic zone, of both freshwater and marine ecosystems, many chytrid species have been morphologically described as parasites on almost all major groups of phytoplankton. However, the majority of these parasitic chytrids has rarely been isolated and lack DNA sequence data, resulting in a large proportion of "dark taxa" in databases. Here, we report on the isolation and in-depth morphological, molecular and host range characterization of a chytrid infecting the common freshwater desmid Staurastrum sp. We provide first insights on the metabolic activity of the different chytrid development stages by using the vital dye FUN®-1 (2-chloro-4-[2,3-dihydro-3-methyl-[benzo-1,3-thiazol-2-yl]-methylidene]-1-phenylquinolinium iodide). Cross infection experiments suggest that this chytrid is an obligate parasite and specific for the genus Staurastrum sp. Phylogenetic analysis, based on ITS1-5.8S-ITS2 and 28S rDNA sequences, placed it in the order Rhizophydiales. Based on the unique zoospore ultrastructure, combined with thallus morphology, and molecular phylogenetic placement, we describe this parasitic chytrid as a new genus and species Staurastromyces oculus, within a new family Staurastromycetaceae.


Assuntos
Quitridiomicetos/classificação , Quitridiomicetos/fisiologia , Desmidiales/microbiologia , Quitridiomicetos/genética , DNA Espaçador Ribossômico/genética , Alemanha , Especificidade de Hospedeiro , Lagos/microbiologia , Filogenia , RNA Fúngico/genética , RNA Ribossômico 28S/genética , Análise de Sequência de RNA , Especificidade da Espécie
18.
Environ Microbiol ; 19(10): 3802-3822, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28618196

RESUMO

Chytridiomycota, often referred to as chytrids, can be virulent parasites with the potential to inflict mass mortalities on hosts, causing e.g. changes in phytoplankton size distributions and succession, and the delay or suppression of bloom events. Molecular environmental surveys have revealed an unexpectedly large diversity of chytrids across a wide range of aquatic ecosystems worldwide. As a result, scientific interest towards fungal parasites of phytoplankton has been gaining momentum in the past few years. Yet, we still know little about the ecology of chytrids, their life cycles, phylogeny, host specificity and range. Information on the contribution of chytrids to trophic interactions, as well as co-evolutionary feedbacks of fungal parasitism on host populations is also limited. This paper synthesizes ideas stressing the multifaceted biological relevance of phytoplankton chytridiomycosis, resulting from discussions among an international team of chytrid researchers. It presents our view on the most pressing research needs for promoting the integration of chytrid fungi into aquatic ecology.


Assuntos
Quitridiomicetos/classificação , Quitridiomicetos/patogenicidade , Micoses/microbiologia , Fitoplâncton/microbiologia , Animais , Evolução Biológica , Ecologia , Ecossistema , Microbiologia Ambiental , Cadeia Alimentar , Especificidade de Hospedeiro , Filogenia
19.
J Eukaryot Microbiol ; 64(3): 383-393, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27714973

RESUMO

Chytrids are true fungi that reproduce with posteriorly uniflagellate zoospores. In the last decade, environmental DNA surveys revealed a large number of uncultured chytrids as well as undescribed order-level novel clades in Chytridiomycota. Although many species have been morphologically described, only some DNA sequence data of parasitic chytrids are available from the database. We herein discuss five cultures of parasitic chytrids on diatoms Aulacoseira spp. and Asterionella formosa. In order to identify the chytrids examined, thallus morphologies were observed using light microscopy. We also conducted a phylogenetic analysis using 18S, 5.8S, and 28S rDNA sequences to obtain their phylogenetic positions. Based on their morphological characteristics, two cultures parasitic on As. formosa were identified as Rhizophydium planktonicum and Zygorhizidium planktonicum. The other three cultures infecting Aulacoseira spp. (two on Aulacoseira ambigua and the other on Aulacoseira granulata) were regarded as Zygorhizidium aff. melosirae. The results of the molecular phylogenetic analysis revealed that R. planktonicum belonged to the known order Chytridiales, while the two species of Zygorhizidium were placed in a novel clade that was previously reported as an undescribed clade composed of only the environmental sequences of uncultured chytrids.


Assuntos
Quitridiomicetos/classificação , Quitridiomicetos/isolamento & purificação , Diatomáceas/parasitologia , Fungos/classificação , Fungos/isolamento & purificação , Filogenia , Sequência de Bases , Quitridiomicetos/citologia , Quitridiomicetos/genética , Classificação , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , DNA Ribossômico/genética , Fungos/citologia , Fungos/genética , Japão , Microscopia , RNA Ribossômico 28S/genética , RNA Ribossômico 5,8S/genética , Especificidade da Espécie , Taiwan
20.
Mycologia ; 107(3): 633-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25800251

RESUMO

Lobulomycetales is one of the smallest orders of Chytridiomycota, containing only four genera and five species. In a survey in Japan we isolated a chytrid from a soil sample collected in a broadleaf forest, which grouped in Lobulomycetales by BLAST query. To identify this chytrid and determine its taxonomic position, thallus development and morphology were observed by light microscopy and zoospore ultrastructure was examined using a transmission electron microscopy. We conducted a phylogenetic analysis using nuc 28S rDNA sequences. Thallus morphology was characterized by a spherical zoosporangium with multiple operculate discharge papillae, which is different from that of any other species in Lobulomycetales. This chytrid is similar to Chytriomyces multioperculatus in having multiple operculate discharge papillae, but these are distinguished by characters of the discharge papillae and rhizoidal systems. Zoospores of this chytrid had electron-dense material in the kinetosome, a unique character in the order. Our 28S phylogeny placed it in a distinct clade, sister to all described species in Lobulomycetaceae. Based on these results, we propose a new genus and species of Lobulomycetales, Cyclopsomyces plurioperculatus.


Assuntos
Quitridiomicetos/classificação , Quitridiomicetos/isolamento & purificação , Microbiologia do Solo , Quitridiomicetos/genética , Quitridiomicetos/crescimento & desenvolvimento , DNA Fúngico/genética , DNA Ribossômico/genética , Japão , Dados de Sequência Molecular , Filogenia , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...